Relationship between fish size and otolith size of four deep-sea fishes from the Western Bay of Bengal, India

K Bheemeswararoa, K V Aneesh Kumarb, S David Kingstona, P Jawahara, P Dharmakara & H Manjebrayakath*

aFisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Thoothukudi, Tamil Nadu – 628 008, India
bSacred Heart College (Autonomous), Thevara, Cochin, Kerala – 682 013, India
cCentre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi, Kerala – 682 508, India
*E-mail: hashim@cmlre.gov.in
Received 09 April 2021; revised 05 February 2022

The present study provides the otolith morphology and morpometric relationships with fish size of four deep-sea fishes (Parascombrops pellucidus Alcock, 1889, Alepocephalus blanfordii Alcock, 1892, Lamprogrammus niger Alcock, 1891, Pterygotrigla hemisticta (Temminck & Schlegel, 1843)) collected from western Bay of Bengal during March 2020. Among these, the equations were derived for the first time for three species (P. pellucidus, A. blanfordii, L. niger). Sampling was done as a part of deep-sea exploratory survey of FORV Sagar Sampada along the deeper shelf regions of the Bay of Bengal at a depth range of 200 – 1000 m using high-speed demersal trawl (HSDT-CV). The numerical relations established using regression between fish size (TL) and various otolith morphometric measurements (otolith length (OL), otolith height (OH), otolith weight (OW), otolith area (OA) and otolith perimeter (OP)) can be used to predict the prey size in food and feeding studies for studying the food web dynamics of less-studied deep-sea fishes. LWR of the otolith of selected species showed a negative allometric growth (t-test, p < 0.5). The higher r^2 value (> 0.70) obtained for the relationship between fish size (TL) and various otolith morphometric measurements indicates the robustness of the model. The representative images of otoliths of these fishes will be helpful to the taxonomists for the species confirmation and reconstruction of past species assemblages in the palaeontological studies.

Keywords: Deep-sea fishes, Indian water, Morphometry, Otolith, Western Bay of Bengal

Introduction

Otolith morphology is gaining much importance in many ichthyological studies and otoliths of more than 3000 species are available in various otolith atlases and online databases. Otoliths have many biological functions in fishes viz., locomotion, hearing and balancing, swimming and acoustic communication, etc. Otoliths have a broad spectrum of usage in fisheries and ichthyology research. They are used as the tools for predicting size of the fish in food web dynamics studies and their morphology has wide uses in palaeontology, phylogeny, evolutionary and interpretation of historical fisheries.

In fisheries, otolith morphology has a significant role in understanding taxonomical identification of species, stock discrimination and spatio-temporal variation in population structure and in pray size and type in feeding studies. Otolith morphological variability also helps in measuring biodiversity along with conventional biodiversity indices such as richness, evenness and dominance. Fishes possess three pairs of otoliths viz., sagitta, asteriscus, lapillus, among these sagittal otoliths are preferred over the other two due to its large size and high intra-specific morphological variation.

Many past and recent studies on the Indian deep-sea fishes are restricted to taxonomy, basic life history characteristics such as length-weight relationships and feeding and reproductive biology. Studies on the morphology and morphometric relationships of the otoliths of deep-sea fishes of India are found to be limited. Further, the equations are derived for very few fishes and found to be inadequate considering the rich deep-sea fish diversity of India. Hence, it is highly imperative to derive similar equations for a maximum number of species for understanding the food and feeding pattern and to advance our knowledge on food web dynamics in deep-sea fishes of the Indian EEZ.
Andaman Sea22-24,27 and similar studies are absent in Bay of Bengal waters. Hence, the numerical equations provided in the present study tries to fill this gap for reconstructing the fish size from various otolith morphometric measurements and understanding the spatial variations in these relationships.

Material and Methods

Samples were collected from western Bay of Bengal waters (Lat. 10°49.516' – 16°57.040' N; Long. 80°22.068' – 82°59780' E) as part of deep-sea exploratory surveys conducted onboard FORV Sagar Sampada (Cruise no. 398) of Centre for Marine Living Resources & Ecology (CMLRE), Ministry of Earth Sciences (MoES), Government of India, using a High-Speed Demersal Trawl (Crustacean version) during March 2020 at a depth range of 200 – 1000 m. Four deep-sea fishes were selected for the present study (\textit{Parascombrops pellucidus} Alcock, 1889; \textit{Alepocephalus blanfordii} Alcock, 1892; \textit{Lamprogrammus niger} Alcock, 1891; and \textit{Pterygotrigla hemisticta} (Temminck & Schlegel, 1843)) belonging to four families viz., Acropomatidae, Alepocephalidae, Ophidiidae and Triglidae, respectively.

Samples were examined and identified up to the species level with the help of standard identification keys and published papers28-30. Morphometric measurements of the fishes were collected onboard, and samples were transported to the CMLRE laboratory for future analysis. A total of 127 otoliths and samples were transported to the CMLRE for reconstructing the fish size from various otolith morphometric measurements and understanding the spatial variations in these relationships.

Results

Table 1 furnishes the information regarding the sample size, minimum and maximum values of fish length, fish otolith length and weight for four species along with their regression parameters explaining the otolith growth pattern. The representative images of the otoliths of four species are given in Figure 1.

The study indicated that, among the four species selected, \textit{L. niger} possesses bigger otoliths (otolith length, 25.29±3.12 mm; otolith weight, 374.8±77.33 mg) and \textit{P. hemisticta} have smaller otoliths (otolith length, 21 30.5-47.8 5.727-8.28 15.7-37.6 0.4705 2.079 0.242 0.29 0.73 0.1459-1.5176 1.479-2.679

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>TL (cm) Min-Max</th>
<th>OL (mm) Min-Max</th>
<th>OWe (mg) Min-Max</th>
<th>Regression parameters for otolith length and otolith weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Parascombrops pellucidus}</td>
<td>35</td>
<td>2.016-8.258</td>
<td>3.423-4.953</td>
<td>3.1-8.6</td>
<td>a = 0.1338 b = 2.559 SE a = 0.107 SE b = 0.86 SE r = 0.0808-0.2214 2.191-2.926</td>
</tr>
<tr>
<td>\textit{Alepocephalus blanfordii}</td>
<td>21</td>
<td>30.5-47.8</td>
<td>5.727-8.28</td>
<td>15.7-37.6</td>
<td>a = 0.1459-1.5176 SE a = 0.057 SE b = 0.29 SE r = 1.479-2.679</td>
</tr>
<tr>
<td>\textit{Pterygotrigla hemisticta}</td>
<td>32</td>
<td>13-21.1</td>
<td>2.256-3.48</td>
<td>2.1-6.5</td>
<td>a = 0.2221 b = 2.759 SE a = 0.105 SE b = 0.81 SE r = 0.1352-0.3650 2.273-3.245</td>
</tr>
<tr>
<td>\textit{Lamprogrammus niger}</td>
<td>39</td>
<td>32.8-66.7</td>
<td>9.66-25.29</td>
<td>37.8-374.8</td>
<td>a = 0.0663-0.3651 SE a = 0.14 SE b = 0.88 SE r = 2.130-2.712</td>
</tr>
</tbody>
</table>

Table 1 — Relationship between otolith length and otolith weight and for the size ranges (total length TL) of four deep-sea species captured in Bay of Bengal waters during 2020 using high speed demersal trawl. n = sample size; TL = total length; Min-Max = minimum and maximum values observed; “a” and “b” = regression parameters; SE = standard error; r = correlation coefficient; CL = confidence limits
3.48±0.302 mm; otolith weight, 6.5±1.25 mg). Relationship between OL×OWe of four species showed negative allometric relation (b value range from 2.079 – 2.759) (t-test P < 0.05). The r² values for these relations were higher than 0.8 for three species and A. blanfordii showed lowest r² values (0.73).

The results of regression analysis for the association between fish size (TL) and otolith size measurement are given in Table 2. P. pellucidus showed a high coefficient of determination (r² > 0.9) for the relation between fish size and otoliths (r² = 0.93 for OA×TL and 0.91 for OL×TL and OP×TL) compared to other three species. However, L. niger showed very low r² values with all the variables (r² = 0.46 to 0.59). The r² values obtained for other two species ranged from 0.69 to 0.86 for these relations. The study indicated that the equations derived using all otolith morphometric variables and otolith weight can give accurate estimations for reconstructing the prey size (r² ranges from 0.93 to 0.73) except for L. niger (r² ranges from 0.58 – 0.59) (Table 3). Otolith area and otolith length give better estimations for P. pellucidus, P. hemisticta and L. niger, and otolith weight was found to be most suited for predicting the size of A. blanfordii.

Discussion

The present study provides regression equations for predicting the fish size of four deep-sea fishes using various otolith morphometric measurements. The
Our studies indicated that estimation \((b\text{ min}\)eral accretion in the otoliths\(^{27,39}\) influences the growth rate of the fish and also the competition among the species, which significantly in the environmental conditions, food availability, sex and oncogenic changes\(^{42}\) and chemical damage in digestive track\(^{43}\). However, a better coefficient of association between otolith length and otolith weight is found to be negatively allometric\(^{22,23}\). There are no previous estimates are available for the comparisons except for \(P.\ hemisticta\)^{22}.

The \(b\) value obtained \((b = 2.75, r^2 = 0.81)\) for the relationship between otolith length and otolith weight for \(P.\ hemisticta\) in the present study agrees with the previous estimation of Kumar et al.\(^{22}\) \((b = 2.46, r^2 = 0.65)\) when fishes were collected from the Arabian Sea. However, there is a spatial variation in the \(b\) values \((b = 1.01)\) was noted with the previous estimation \((b = 0.80)\) for the relationship between \(OL \times TL\)\(^{22}\). Our studies indicated that \(P.\ hemisticta\) collected from two different oceanographic conditions (Arabian Sea and Bay of Bengal) showed a differential otoliths growth pattern. Both these waters are highly diverse in their physical, chemical and biological characteristics\(^{37}\). Otolith accretion rate is reported to be influenced by the prevailing oceanographic conditions\(^{38}\). The variations in the otolith growth rate \((b)\) are possibly due to differences in the environmental conditions, food availability, competition among the species, which significantly influences the growth rate of the fish and also the mineral accretion in the otoliths\(^{27,39}\).

It is worthy to note that otolith dimensions may underestimate the prey size as the thickness of otolith also changes along with the somatic growth instead of longitudinal growth after maturity due to mineral deposition\(^{40,41}\). In this condition, otolith weight can be more appropriate to reconstruct the prey size\(^{36}\). Also, underestimation of prey size can occur in the same species due to change in a geographical area, stock, sexes and oncogenic changes\(^{42}\) and chemical damage in digestive track\(^{43}\). However, a better coefficient of relationships obtained in the present study indicates that these equations can give an accurate estimation of fish size.

Conclusion

The equations derived in the present study can be successfully used to predict the prey size in food and feeding analysis and the representative images of species provided can be used as a complementary diagnostic character in taxonomic as well as paleontological studies\(^{22,23,44}\). Indian waters are quite renowned for their high deep-sea fish diversity and similar studies from these waters are inadequate to understand the biology, life history, sensory constraints and stock/population structure. Hence, further studies on otolith morphology, morphometric relationships and shape are highly inevitable to address these aspects more convincingly.

Acknowledgements

Authors would like to express deep gratitude to the Secretary, Ministry of Earth Sciences (MoES), New Delhi and the Director, Centre for Marine Living Resources and Ecology, Government of India, for providing facilities onboard FORV Sagar Sampada for sample collection. Authors also express sincere thanks to the captain, fishing master, fishing hands and all the participants for their support and cooperation during the cruise. The work has been carried out as part of postgraduate dissertation work under Marine Living Resource Program of CMLRE. Sincere thanks to Fisheries College and Research Institute, Thoothukudi, (Tamil Nadu Dr. J. Jayalalithaa Fisheries University) for all the support and encouragement for the study. This is CMLRE contribution no. 154.

Conflict of Interest

The authors of this paper declare no competing or conflicts of interest.

Author Contributions

KB, AKV: Sample collection, taxonomic identification, methodology, data analysis, writing-original draft, writing- review and editing, visualization. HM: Sample collection, taxonomic, identification, writing- review and editing. PJ, SDK, PD: writing- review and editing.

References

29 Fischer W & Whitehead P J P, *FAO species identification sheets for fishery purposes: Eastern Indian Ocean (Fishing Area 57) and Western Central Pacific (Fishing Area 71)*, (Food and Agriculture Organization of the United Nations), 1974.

