A novel route for the synthesis of impurities C and G of antihypertensive drug timolol maleate

Mugdha Suryawanshi, Gauri Babhulkar, Bharat Satpute, Tejal Patil, Santosh Chindhe, Deepak Pawar, Dileep Kumar & Rajesh Rane

Note

Indian Journal of Chemistry
Vol. 63, July 2024, pp. 732-736
DOI: 10.56042/ijc.v63i7.7519

In this short communication has been described the synthesis and characterization of C and G impurities of Timolol maleate. The recent study introduces the initial synthesis of these impurities with both high yield and high purity. The purity of the impurities have been validated through High-Performance Liquid Chromatography (HPLC), while their structures have been determined utilizing ¹H NMR and mass spectroscopy.

Keywords: Timolol maleate, Impurity, Synthesis

Impurities are chemicals that coexist with the API or arise during the synthesis or development of both the API and the formulation. Even minute levels of these impurities can have an impact on a drug's effectiveness and safety. The safety of a drug is determined not only by the active drug substance's toxicological qualities but also by the impurities it contains. Because impurities in APIs can impact the safety and quality of pharmaceutical products, API impurity profiling is becoming more important. As a result, identifying, isolating, and quantifying impurities are an important part of drug development and regulatory assessment. There are two categories of impurities: (a) impurities linked with active medicinal components and (b) impurities formed during formulating, storage, or manufactured forms. Various pharmacopeias, such as the BP (British Pharmacopeia), USP (United States Pharmacopeia), IP (Indian Pharmacopeia), and others, are gradually adding limitations to the authorized quantities of impurities present in active pharmaceutical ingredients (APIs) or formulations. The reported impurities of timolol maleate in the European and British Pharmacopoeia are as given in Fig. 1: Impurity A, Impurity B, Impurity C, Impurity D, Impurity E, Impurity F, Impurity G, Impurity H and Impurity I.

In comparison to the tedious task of isolating impurities from the final API, which does not provide sufficient purity and yield, the synthesis of impurities enables the utilization of their pure forms in elucidating their biological effects and serves as a standardized reference for the discernment of analogous impurities within the final product. The synthesis of impurities enables the utilization of their pure forms in elucidating their biological effects and serves as a standardized reference for the discernment of analogous impurities within the final product. To date, there are no synthetic methods have been published in the literature for impurities C and G. Here we present the synthesis of these two impurities with detailed structural characterization.

Results and Discussion

The chemical synthesis of timolol maleate was reported by Bredikhina, Zemfira A. et al. as shown in Scheme 1.

Synthesis of impurity C, 18

Compound 14 was formed by reduction of compound 13 using KOH, HCl, dimethyl sulfoxide, and water. Compound 14 was treated with sodium hydride (NaH)
and 3-chloro-1,2-propanediol, at 90-95°C for 20 h to get product 15. Formation of compound 16 occurs by reacting 15 with thionyl chloride (SOCl₂) and triethylamine at 20°C. Compound 16 was treated with isobutylamine and dimethylformamide for 45 h at 60-70°C to get compound 17. Compound 17 finally reacts with potassium carbonate (K₂CO₃) and 4-(4-chloro-1,2,5-thiadiazol-3-yl)morpholine by using DMF to get 18 (Scheme 2).

Synthesis of impurity G, 22

Compound 19 was treated with thionyl chloride (SOCl₂) and pyridine at RT for 2 h to get 20. Compound 20 was treated with pyrrolidine and ethanol to get 21. Compound 22 (impurity G) was formed by reacting compound 22 with KOH and methanol (Scheme 3).

Experimental Section

Preparation of 4-morpholin-4-yl-1,2,5-thiadiazol-3-one, 14

Compound 13 (5 g, 24.31 mmol) was mixed with DMSO (22 mL) and 4N aq. KOH (7.4 mL) at 25-28°C, and was allowed to reflux for 1-6 h with continuous stirring. The mixture was cooled to 0°C.
and 25 mL of water was added. Using strong HCl, the reaction mixture was acidified, then filtered, and the white solid product was collected. Yield 3.75 g (82.4%). m.p.148-150°C. ¹H NMR (400 MHz, DMSO-d₆): δ 3.41 (4H, d), 3.64 (4H, d); MS: m/z Calcd for C₆H₈N₃O₂S [M+H]: 188.21. Found: 188.22.

Preparation of (2S)-3-[(4-morpholin-4-yl-1,2,5-thiadiazol-3-yl)oxy] propane-1,2-diol, 15

A suspension of sodium hydride (0.66 g, 16.5 mmol) was introduced to a dry dimethylformamide solution containing compound 14 (2.06 g, 11 mmol) under an argon atmosphere. A 1.5 h heating period was then applied to the reaction mixture at 90–95°C, followed by subsequent cooling to RT. Mixture of (S)-3-chloropropane-1, 2-diol (S) (1.46 g, 13.2 mmol) in dimethylformamide (2 mL) was added to the the above cooled reaction mixture. Subsequently, the reaction mixture underwent heating and stirring for a duration of 20 h at 90-95°C. Following the completion of the reaction, the solvent was evaporated under reduced pressure. The obtained residue was diluted with 80 mL of water and subjected to extraction using ethyl acetate. Anhyd. MgSO₄ was used to dry the organic layers. The solvent was evaporated to get compound 15 (Ref. 6). (Yield 2.4 g, 86.34%). m.p.201.5-202.5°C. ¹H NMR
NOTES 735

Preparation of 4-(4-morpholino-1, 2, 5-thiadiazol-3-yl)oxy)methyl)-1,3,2-dioxathiolane 2-oxide, 16

Thionyl chloride SOCl₂ (1.19 g, 10 mmol) was dissolved in 5 mL of dichloromethane. After adding the previously mentioned mixture to compound 15 (500 mg, 1.9 mmol), the mixture was stirred for 1 h at RT.

After completion of reaction, the solvent was distilled out to get product 16 (Ref. 7). Yield 321.3 mg (75.6%). m.p. 205-207°C. 1H NMR (400 MHz, DMSO-d₆): δ 3.17-3.33 (4H, d), 3.59-3.75 (4H, d), 4.23 (1H, d), 4.32-4.43 (2H, d), 4.74-4.90 (2H, d); MS: m/z Calcd for C₉H₁₃N₃O₅S₂ [M+H]: 308.33. Found: 308.34.

Preparation of 2S-1-(tert-butylamino)-3-[(4-morpholin-4-yl-1,2,5-thiadiazol-3-yl)oxy]propan-2-ol, 17

Compound 16 (5 g, 16.27 mmol) was added to isobutylamine (1.6 g, 27 mmol) and dimethylformamide (6 mL) and the mixture was heated for 45 h at 60-70°C. After the reaction was finished, the mixture was washed with a 1N NaOH (20 mL) solution, and the residue was extracted into ethyl acetate. To obtain product 17, the extract was dried over anhyd. MgSO₄ and the solvent evaporated. Yield 3.71 g (76.5%). m.p. 201-202°C. 1H NMR (400 MHz, DMSO-d₆): δ 1.26 (9H, s), 2.73-2.85 (2H, d), 3.17-3.33 (4H, d), 3.59-3.75 (4H, d), 3.85 (1H, t), 4.02-4.14 (2H, d); MS: m/z Calcd for C₁₃H₂₄N₄O₃S: 317.42. Found: 317.45.

Preparation of (R)-N-(tert-butyl)-2,3-bis[(4-morpholin-1,2,5-thiadiazol-3-yl)oxy]propan-1-amine, 18

Compound 17 (5 g, 15.8 mmol) was added to potassium carbonate K₂CO₃ (2.18 g) and dimethylformamide (20 mL). The reaction mixture was subjected to agitation for a period of 2 h under RT conditions. Product 18 was obtained after the residue was extracted into ethyl acetate. Yield 2.64 g, (81.3%). m.p.210-212°C. ¹H NMR (400 MHz, DMSO-d₆): δ 1.08 (9H, s), 1.23 (2H, s), 2.74-2.85 (2H, d), 2.88 (1H, d), 3.37-3.38 (4H, d), 3.60-3.64 (8H, d), 4.67-4.69 (3H, t), 4.83 (1H, d), 5.26 (1H, m); MS: m/z Calcd for C₁₉H₂₇N₅O₃S₂ [M+H]: 486.19. Found: 486.20. HPLC purity 99.81%.

Preparation of 3, 4-dithioxy-1, 2, 5-thiadiazole 1-oxide, 20

To the compound 19 (5 g, 34.68 mmol), pyridine (7.8 mL, 98.6 mmol) was added. Then to above solution, thionyl chloride SOCl₂ (1.95 mL, 16.52 mmol) was added drop-wise. The reaction mixture was stirred for a duration of 2 h under ambient conditions. After completion of reaction, the product was washed with n-hexane, and dried to get compound 20 (Ref. 8). Yield 2.73 g (72%). m.p. 74-78°C. ¹H NMR (400 MHz, DMSO-d₆): δ 1.16 (6H, t), 4.15-4.27 (3H, q), 4.21 (1H, q); MS: m/z Calcd for C₉H₁₀N₂O₃S [M+H]: 191.21. Found: 191.22.

Preparation of 3-ethoxy-4-pyrrolidin-1-yl-1, 2, 5-thiadiazole 1-oxide, 21

A solution of compound 20 (1.85 g, 10 mmol) in ethanol (10 mL) was added to pyrrolidine (0.72 g, 10 mmol). After being stirred for 0.5 h at RT, the mixture was concentrated to one-fourth of its original volume and then diluted with ether. The crystals were vacuum-dried after being filtered. Yield 1.3 g (3%). m.p. 62-64°C. ¹H NMR (400 MHz, DMSO-d₆): δ 1.22 (3H, t), 1.89-2.09 (4H, d), 3.35-3.53 (4H, d), 4.19-4.31 (2H, q); MS: m/z Calcd for C₁₃H₂₀N₃O₃S: 317.46. Found: 317.41.

Preparation of 4-morpholin-4-yl-1-oxo-1,2,5-thiadiazol-3-one, 22

To compound 21 (1.15 g), 6 mL of 0.85 M KOH was added then methanol was added. The reaction mixture was then stirred for 30 min. After the completion of reaction, the precipitated product was separated from the rest of the mixture. Yield 1.0 g (82.5%). m.p. 72-74°C. ¹H NMR (400 MHz, DMSO-d₆): δ 3.41-3.43 (2H, d), 3.67-3.69 (4H, d), 4.28 (2H, d); MS: m/z Calcd for C₆H₉N₃O₃S: 204.21. Found: 204.00. HPLC purity: 99.33%.

Conclusion

Our current study demonstrates a simple way for obtaining a high-quality Timolol impurity reference for quality control of Timolol maleate. Two impurities of Timolol maleate, C, and G were effectively synthesized using a simple, fast protocol and characterized. This synthesis not only aids in the production of high-quality medicinal substances but also aids in the establishment of an impurity profile.

Acknowledgment

The authors are grateful to the Principal of Poona College of Pharmacy, Dr. A. P. Pawar, for his encouragement and assistance.
Supplementary Information

The analytical spectral data is available in the website http://nopr.niscpr.res.in/handle/123456789/58776.

References